Consider a long cylindrical tube of inner and outer radii, ri and ro, respectively, length, L and thermal conductivity, k. Its inner and outer surfaces are maintained at Ti > To). Assuming one dimensional steady that heat conduction in the radial direction, the thermal resistance in the wall of the tube is
(a) $\frac{1}{2\pi L}\imath n\left ( \frac{r_{i}}{r_{o}} \right )$ (b)$\frac{1}{2\pi r_{i} L}$
(c) $\frac{1}{2\pi L}\imath n\left ( \frac{r_{o}}{r_{i}} \right )$ (d) $\frac{1}{4\pi L}\imath n\left ( \frac{r_{o}}{r_{i}} \right )$