0 votes
57 views
asked in IM&OR by (215k points)

In an M/M/1 queuing system, the number of arrivals in an interval of length T is a Poisson random variable (i.e., the probability of there being n arrivals in an interval of length T is $\frac{e^{\lambda T\left ( \lambda T \right )^{n}}}{n{}'}$   The probability density function f(t) of the inter-arrival time is given by                                                                                       

      (a)   $\lambda ^{2}\left ( e^{-\lambda ^{2}t} \right )$                                                             (b) $\left ( \frac{ e^{-\lambda ^{2}t}}{\lambda ^{2}} \right )$ 

      (c) $\lambda e^{-\lambda t}$                                                                           (d) $\left ( \frac{ e^{-\lambda t}}{\lambda} \right )$

Please log in or register to answer this question.

Welcome to Q&A discussion forum, where you can ask questions and receive answers from other members of the community.

10.4k questions

274 answers

26 comments

15.3k users

...