Given that
m = 7 kg
at N1 = 420 rpm, r1 = 12.4cm
let the relation be F = ar + b --- (1)
F1 = mr1$\omega$12 = 7 x 12.4 x $(\frac{2\times\pi\times 420}{60})^2\times10^{-2}$
=1679.096 N
At N2=440 rpm, r2= 13,2 cm
F2= 7 x 13.2 x $(\frac{2\times\pi\times 440}{60})^2\times10^{-2}$
=1961.7089 N
∴ By substituting these values in eq (1)
1679.096 = a x 12.4 x 10–2 + b --- (2)
1961.7089 = a x 13.2◊10–2 +b --- (3)
By solving eq(2) and eq(3)
⇒ a = 35326.6125 N/m, b = –2701.4039N
F = 35326.613r – 2701.404 N
what is F at r = 12.8 cm ?
F = 35326.613 x 12.8 x 10-2 - 2701.404
= 1820.4025 N
Finding $\omega$ corresponding to force F
But F=mr$\omega$2
⇒ 7 x 12.8 x 10–2 x$(\frac{2\times\pi\times N}{60})^2$ =1820.4025
⇒ N = 430.43 rpm